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Abstract

The effect of the free-stream velocity profile on the transition from laminar to turbulent flow on a flat plate was studied ex-

perimentally and numerically and it is presented in this paper. The flows investigated are based on the T3L test case of the ER-

COFTAC Special Investigation Group for transition. According to this test case, the boundary layer development on a flat plate

with a semi-circular leading edge is examined by means of transition due to separation, under various free-stream conditions

concerning the turbulence intensity and velocity magnitude. In the present work, two free-stream velocity distributions were studied.

The first was a uniform velocity one and the second, with a mean shear velocity profile with positive gradient, oU=oy ¼ 27:7 s�1.
Measurements using hot-wire anemometry were taken in two primary regions: far upstream of the flat plate to observe the velocity

and turbulence distributions and near the flat plate to capture the boundary layer development and the transition phenomenon. The

effect of the two free-stream velocity distributions was studied and it was shown that for both velocity distributions a recirculation

region of the flow occurred near the flat plate wall that led to transition dominated by the boundary layer separation. For the

positive velocity gradient the separation region was smaller compared to the case of uniform free-stream profile. Both cases were

also studied computationally. Two widely used linear eddy-viscosity turbulence models, the k–e and the k–x with specific low

Reynolds formulations were applied and in addition, a non-linear eddy-viscosity based on the k–e model has been implemented. In
general, all the k–e models gave satisfactory predictions for both flow cases regarding the predicted velocity distributions, while the
k–x model gave poor results. Concerning the longitudinal Reynolds stress distributions in the near-wall region, the non-linear k–e
model gave the best predictions inside the separation zone but it over predicted the corresponding values beyond the reattachment

point while beyond the separation the linear models predicted the longitudinal stresses in a more satisfactory way. � 2002 Elsevier

Science Inc. All rights reserved.
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1. Introduction

Transition is a phenomenon of primary interest in the
industry of aeronautics and turbomachinery due to the
complex behavior of fluid flow and the dramatic change
of flow properties, such as skin friction, heat transfer
coefficients, pressure distribution, etc. A satisfactory
prediction and even better, control of the transitional
region can increase the performance of a crucial device.
In the past, a large amount of work has been carried out
to investigate the conditions under which transition

occurs and how these conditions affect its development.
Mayle (1991), in his overview on transition, has given a
detailed description of the transition phenomenon. By
regarding the three essential ways that transition can
occur, i.e., natural, by pass and transition through
boundary layer separation, it was found that transition
is primary affected by the free-stream turbulence (FST)
level (Van Driest and Blumer, 1963; Hall and Gibbings,
1972) the pressure gradient, Mayle, (Blair, 1982) and a
possible separation of a laminar boundary layer that at
reattachment becomes turbulent. For the effect of FST
level on transition it has been observed that as the value
of FST level increases, the length of the laminar flow
region tends to decrease. The FST levels for most cases
examined in the past started at very low values, 0.1%
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where natural transition occurs, and reached values, 2%,
4%, even 10%, where by-pass transition is the main
mechanism. In parallel and as a result of the leading
edge geometry, there is a possible onset of transition due
to boundary layer separation. This separation acceler-
ates transition and combined with the FST affects
significantly the transition region. A compilation of
detailed experimental and computational data was car-
ried out by ERCOFTAC where a Special Interest Group
started the study of transition in 1991. The main interest
of the work was on the effects of FST and of the pressure
gradient on transition. In parallel, computational sim-
ulations were performed using the available integral
methods and/or various turbulence models. Savill (1995)
presented a collection of the computational contribu-
tions for numerous test cases where integral methods
and eddy-viscosity models have been tested. In general,
both methods gave good agreement with experiments.
For the eddy-viscosity models, the Launder–Sharma k–e
model was found to give the best predictions, despite its
deficiency to predict adequately flows characterized by
the presence of adverse pressure gradient. For the T3L
case especially, AUTh group (1994), Yakinthos and

Goulas (1999), presented computational results based
on the low Reynolds k–e Launder–Sharma model, and
in a good agreement with the experiments of VUB group
(1992) for high FST levels and with the experiments of
Coupland and Brierley (1996, Rolls-Royce group) for
zero and non-zero pressure gradient. For these predic-
tions it was necessary to incorporate the Kato and
Launder (1993) modification in the production term of
kinetic energy to suppress the spurious generation of k
in the impingement region at the stagnation point that
led subsequently to smaller separation region than the
experimental one. Finally, another approach has been
made in the same period by Voke and Yang (1995).
They presented excellent computational results for the
T3L test case using LES and they concluded that sepa-
ration occurred under all the free-stream conditions that
they have tested followed by transition, even when they
started their computations with zero FST.
The majority of test cases examined through the SIG

of ERCOFTAC for transition, has focused on flows
with isotropic or weakly anisotropic FST with varying
intensities and/or the existence of strong favorable/ad-
verse pressure gradient. The experimental results that

Nomenclature

ce1, ce2 coefficients in e-equation
ce3 vortex stretching parameter in the e-equation
cl coefficient in eddy-viscosity equation
cu correction factor for near wall measurements
c1–c5 coefficients in the non-linear Reynolds stres-

ses formulation
fb�fb coefficients in k–x model.
fl damping function in low Reynolds number

turbulence modeling (k–e model)
k turbulence kinetic energy
l dissipation rate length scale in the free-stream

region
Pk production of turbulence energy
Rt; ~RRt local turbulence Reynolds number (¼ k2=

ðmeÞ; k2=ðm~eeÞ resp.)
Sij strain tensor (¼ oui=oxj þ ouj=oxi)
S; ~SS strain invariants (¼ k=e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SijSij=2

p
; k=~eeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SijSij=2
p

, resp.)
Tu turbulence level (longitudinal velocity com-

ponent, x-direction)
sw wall shear stress
u; v velocity components ix x–y directions
Uc central velocity
Ue velocity at the edge of boundary layer, Ue ¼

0:995Umax
ue Kolmogorov velocity scale, ue ¼ ðmeÞ1=4
us friction velocity, us ¼

ffiffiffiffiffiffiffiffiffiffi
sw=q

p
U mean velocity

uþ dimensionless velocity, uþ ¼ u
us

u0; v0;w0 mean values of fluctuations (x, y, z direc-
tions)

u02 ¼ u0u0, Reynolds stresses (x-component)
v02 ¼ v0v0, Reynolds stresses (y-component)
w02 ¼ w0w0, Reynolds stresses (z- component)
yþ dimensionless wall distance, yþ ¼ yus=m

Greeks
a� damping function in low Reynolds number

turbulence modeling (k–x model)
a;b; b�; r; r� coefficients in k–x model
d boundary layer thickness
d� boundary layer displacement thickness
e dissipation rate of k
~ee isotropic dissipation rate of k
H boundary layer shape factor
h boundary layer momentum thickness
v kinematic viscosity
mt turbulent kinematic viscosity
q density
s dimensionless time
s0 dimensionless time (constant offset value of

turbulence intensity)
Xij vorticity tensor (¼ oui=oxj � ouj=oxi)
X; ~XX vorticity invariants (¼ k=e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XijXij=2

p
; k=~eeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XijXij=2
p

, resp.)
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will be presented here, fill a gap in research on transition
since the same T3L case is studied by having as a free-
stream condition a strongly anisotropic turbulence with
large turbulence intensity in comparison with the origi-
nal test case.
The question posed is whether there is a direct effect

of mean velocity shear on transition and particularly in
the case of transition induced by boundary layer sepa-
ration. The present work therefore, comes to answer this
by comparing the velocity profiles in the region of
transition for a uniform and a mean shear inlet velocity
profile, which in the region of the leading edge have the
same turbulence intensity.
The typical development of isotropic FST with

distance along a wind tunnel is a decaying function
including fixed constants to match the tunnel’s charac-
teristics, Tenekes and Lumley (1985). Various formula-
tions for the FST decay in a wind tunnel have been used
in the past. Among them is an exponential equation,
provided by Baines and Peterson (1951), which predicts
a FST development that starts form high levels of tur-
bulence generated mostly by the turbulence grid gener-
ator and reaches, in an asymptotic way, to the zero
value.
Champagne et al. (1970) studied experimentally the

behavior of pure shear flows with oU=oy > 0 in tunnel
flows. Their primary conclusion was that for a free shear
with a nearly homogeneous turbulence, a growth of
turbulence level downstream is observed. Harris et al.
(1977) presented further experiments with higher shear
values in larger values of dimensionless time s ¼ x=
UcðoU=oyÞ (a parameter that combines the distance
downstream the flow development with the value of
shear gradient and the centre-line velocity Uc), where the
downstream turbulence growth was very clear. Fur-
thermore, Rohr et al. (1988) investigated the growth of
turbulence in a uniform mean shear flow by carrying out
experiments in a water tunnel. It was again observed,
that by keeping a nearly homogeneous turbulence, the
longitudinal turbulence intensity u0=U plotted against
dimensionless downstream distance x (non-dimen-
sionalised by the channel height) or against the dimen-
sionless development time s, was increasing for various
initial conditions and length scales. Tavoularis and
Corrsin (1981) have also carried out experiments in
nearly homogeneous shear flow. They presented the
downstream development of the turbulence component
energies u0u0=U 2

c , v0v0=U
2
c , w0w0=U 2

c which increased in a
monotonic way. On the basis of the above, there was an
effort in this work to combine the characteristics and
laws governing pure shear channel flows with the T3L
test case. A mean shear inlet velocity distribution was
imposed and a comparison with the experiments for the
original T3L test case was carried out.
The present work is divided in two parts. In the first

part, detailed measurements of the velocity distribution

and onset of transition through boundary layer sepa-
ration in the region of the wall of the flat plate for both
uniform and mean shear velocity inlet distributions are
presented. In the second part two linear eddy-viscosity
turbulence models and one non-linear eddy-viscosity
model were used to predict the flow in an effort to ex-
amine their behaviour under such flow conditions.

2. Experimental setup

The experiments were carried out in a wind tunnel at
the Laboratory of Fluid Mechanics & Turbomachinery
at the Aristotle University of Thessaloniki (LFMT-
AUTh). It is an open wind tunnel with a cross section of
307� 307 mm2 and a test section 1 m long. Indicative
velocity measurements in the spanwise direction have
shown that the blockage effect due to the wind tunnel’s
side walls was negligible. The measured velocities have
been carried out in the upper surface of the plate. The
total length of the wind tunnel is 9 m and the air is
driven by an axial fan. The boundary layer under study
was developing on a flat plate 1 m long, 300 mm wide
and 10 mm thick made of aluminium, with a semi-cir-
cular leading edge with 10 mm diameter, which blends
smoothly to the flat portion. This is chosen to match the
T3L case. The entire arrangement is illustrated in Fig. 1
where also the co-ordinate system used is shown.
In the case of uniform inlet velocity the required

turbulence level is produced by a turbulence generator,
placed at an appropriate distance upstream of the flat
plate. The resultant turbulence has been found to be
weakly anisotropic with an intensity of the longitudinal
velocity fluctuation Tu ¼ 7%. The turbulence generator
used is a rectangular grid made of 6 mm square bars.
The open ratio is approximately 60%. Table 1 summa-
rizes the measurement positions. ðx; yÞ ¼ ð0; 0Þ refers to
the stagnation line in the leading edge.
The shear generator used in the experiments is similar

to the ones reported by Champagne et al. (1970), Harris
et al. (1977), Rohr et al. (1988), Tavoularis et al. and
consists of screens with various grid sizes and solidities.
The wind tunnel in the vertical direction is divided to 15
sections using a 2 mm thick aluminium plates. A com-
bination of screens is used to introduce different resis-
tance to the flow in each of the 15 sections and thus
downstream of the generator, a velocity profile with a

Fig. 1. Wind tunnel and flat plate arrangement. System of coordinates.
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mean shear is produced. The turbulence level of the
longitudinal velocity component, measured at 100 mm
upstream the leading edge and in the center-line is ap-
proximately Tu ¼ 7%. When the velocity at the axis of
the wind tunnel to the leading edge is Uc ¼ 5 m/s, the
mean velocity gradient in the vertical direction in the
core region of the tunnel is equal to oU=oy ¼ 27:7 s�1.
For both cases the Reynolds number based on the plate
thickness is 3300. The measurements reported here were
carried out using a constant temperature anemometer
(DISA 55M01). Two types of hot-wire probes were
used: a single wire for the measurements near the flat
plate and a x-wire for measurements in the free-stream
region. A traverse mechanism capable of moving a
probe 200 mm, both in the streamwise direction and in
the direction normal to the upper flat plate surface was
used. The accuracy of the movement in each of the two
directions was 0.01 mm. The hot-wire signal was stored
in a computer. A 16-bit A/D card capable of sampling
simultaneously up to four channels was used. The ac-
quisition frequency was 5 KHz. For each measurement
point, 125,000 discreet values were taken for a time
period of 25 s.

3. Error analysis

All hot-wire probes were calibrated in the free-stream
against a Pitot-Static tube every hour of use, to avoid
drifting due to ambient temperature variations or other
factors. In this way the error in the velocity reading was
approximately 1%. Another reason for errors in veloc-
ity, which was examined, was the heat losses while the
sensor was very close to the aluminium flat plate surface.
Lange et al. (1999) investigated this error and proposed
relationships in order to correct the velocity signal.
According to their work, the correction factor cu ¼
Ureal=Umeasured can be calculated from a simple equation.

cu ¼ 1:0� expð�0:4yþ
2Þ; ð1Þ

where, yþ is the normalized y distance in wall units,
yþ ¼ yus=m. In the present experiment, the first mea-
surement position was at y ¼ 0:3 mm for all measure-
ment stations in x-axis. The value of y ¼ 0:3 mm

corresponded to yþ ¼ 5 at the first measurements sta-
tions in x-axis. Downstream this location, yþ had values
higher than 5. The above equation, for yþ ¼ 5 gives
cu ¼ 0:99995, which means that there is no need to
correct for heat losses. The quantity yþ used in the
equation can be calculated if the wall shear stress is
known. The way that the wall shear stress has been
calculated will be described below.

4. Experimental results

4.1. Wind tunnel characteristics

4.1.1. Uniform inlet profile
The distribution of the free-stream longitudinal tur-

bulence intensity generated by the turbulence generator,
together with the empirical correlation developed by
Baines and Peterson, for isotropic grid-generated tur-
bulence, is presented in Fig. 2(a).
The empirical correlation between the FST Tu, the

bar width, b, and the distance from the turbulence gen-
erating grid, l, is:

Tu ¼ 1:12
l
b

� ��5=7

: ð2Þ

If the measured longitudinal turbulence intensity is in
agreement with the above empirical expression, then
there is an indication that the turbulence is isotropic.
Upstream of the plate there is a difference between the
experimental results and the empirical correlation,
which becomes smaller downstream. The flow at the first
stations is non-isotropic and tends to an almost isotro-
pic behavior far downstream. This is supported by the
distribution of the mean values of Reynolds stresses u0u0

and v0v0 for the same x and y positions as shown in Fig.
2(b). There is a difference between these quantities at the
first stations, which downstream becomes smaller. Ac-
cording also to Bradshaw (1971), it is very difficult to
obtain an isotropic turbulence in the near region behind
a turbulence generation grid. Usually the ratio of the u0u0

and v0v0 is equal to 0.75, i.e., v0v0 ¼ 0:75u0u0 and down-
stream the grid, the turbulence returns slowly to iso-
tropic. For the present experiment in the region behind
the grid, it was also found that v0v0 was equal to 0.75u0u0.

Table 1

Measurement positions

X (m) Y (m) Z (m)

�0.150 From �0.150 to þ0.150 0 Detailed inlet velocity and turbulence distributions with x-

wire for uniform and sheared mean velocity profile

From �0.150 to þ0.8 Y ¼ 0:075 0 Free-stream velocity and turbulence distributions to

observe the behaviour of these quantities in presence and

absence of shear. x-wire measurements

From þ0.006 to þ0.03 From flat plate’s wall up to y ¼ 0:05 in
normal direction. First point from the wall

located at y ¼ 0:0003

0 Detailed velocity measurements in the boundary layer.

Single hot-wire
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4.1.2. Positive mean shear inlet profile
The mean velocity profile at the inlet of the test sec-

tion (at a distance 150 mm upstream of the leading edge)
had a positive gradient with oU=oy ¼ 27:7 s�1 and a
velocity at the middle of the wind tunnel height, Uc ¼ 5
m/s. Measurements at various stations on the flat plate
and far from the surface (y ¼ 50–100 mm) showed that
the velocity gradient oU=oy remained almost constant
and equal with the gradient at the inlet region as pre-
sented in Fig. 3(a).
The normal Reynolds stresses increase in the down-

stream direction as shown in Fig. 3(b). Also, Rohr et al.
demonstrated that the growth of turbulence in a uni-
form mean shear flow occurs nearly at the same rate
regardless of the shear or the mean centerline velocity
when the growth is measured in terms of the dimen-
sionless time s ¼ x=UcðoU=oyÞ. The turbulence intensity
growth for the range of s ¼ 5–25 investigated in his
experiment is given by the following relation:

u0

U
¼ C1

x
Uc

oU
oy

�
� x0
Uc

oU
oy

�
¼ C1 sð � s0Þ; ð3Þ

where x0 is a function of the size of the initial distur-
bance and C1 is a constant independent of x but may
depend on the facility. In our experiment C1 was taken
equal to unity, since there is no an exact formula to
calculate this coefficient. Using the dimensionless time,
the range of in the present measurements was found to
be s ¼ 10–16. The corresponding plot of the turbulence
intensity u0=U versus the dimensionless time is presented

in Fig. 4 where the present experimental data are shown
with full circles.
A very good agreement between the current mea-

surements and the measurements in the wind tunnel of
Tavoularis & Corrsin and Rohr’s expression is shown.
Fig. 5 shows the distributions for both cases of the

longitudinal normal Reynolds stresses in the free-stream
above the boundary layer in the x-direction and in the
region of the flow evolution. It can be seen very clearly
that the longitudinal Reynolds stresses, have the same
values for both cases.

4.2. Flow development

On the above wind tunnel measurements for the flat
plate took place.

Fig. 2. (a) Comparison of the longitudinal turbulence distribution, in the streamwise direction at a normal distance y ¼ 75 mm from the plate, with
the empirical correlation of Baines and Peterson. (b) Reynolds stresses distribution downstream the fluid flow at the same distance.

Fig. 3. (a) The velocity gradient away from the plate surface for various stations in x-axis. (b) Distribution of the Reynolds stresses in the streamwise

direction at a normal distance y ¼ 75 mm form the plate.

Fig. 4. Distribution of the longitudinal turbulence intensity, u0=U , as a
function of the dimensionless time s.
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4.2.1. Transition under uniform inlet profile
Mean-velocity profiles within the boundary layer

to determine the transition region were acquired. All
boundary layer profiles were obtained at the centre of
the test surface in the spanwise direction. The first
measurement position in the streamwise direction was
set at x ¼ 6 mm and in the axis normal to the flat plate’s
surface at y ¼ 0:3 mm for all x-positions. The step of the
measured velocity profiles in the streamwise direction
was 1 mm. The measured velocities within the boundary
layer, is normalized by the maximum velocity Umax,
measured at each station. The distance y has been nor-
malized by the height H of the wind tunnel. The distance
y at which, the velocity inside the boundary layer at-
tained the value 0.995Umax at each measurement station
was assumed to be the boundary layer thickness. In
Fig. 6, the boundary layer velocity profiles at five sta-
tions are given.

The velocity profiles at x ¼ 6, 11 and 12 mm have the
typical shape of a separated boundary layer. This is in-
dicated also by extrapolating the experimental data to-
wards the wall. The region between y ¼ 0 mm (flat plate
surface) and y ¼ 0:3 mm can be simulated by a second
order polynomial. The coefficients of the polynomial
equation can be calculated by using the following con-
ditions: uy¼0 mm ¼ 0 m/s, uy¼0:3 mm equals to the velocity
measured at y ¼ 0:3 mm for each station in streamwise
direction and du=dyjy¼0:3 mm is calculated from the
measured values of velocity at y ¼ 0:3 and 0.4 mm at
each measurement station. Applying the above extrap-
olation, the existence of a separation bubble even in the
first measurement station, located at x ¼ 6 mm can be
observed. At x ¼ 17 mm the extrapolation indicates an
attached boundary layer. The data from the above ex-
trapolation were also used for the calculation of the wall
shear stress in the region where a separation bubble was
indicated by calculating the velocity derivative close to
the wall. In the region where an attached boundary layer
was indicated, the momentum integral equation was
used for the calculation of the wall shear stress as it will
be mentioned below. In Fig. 7, the RMS profiles (root
mean square value of fluctuations), at five stations in the
x-direction are given. The position in y-direction cor-
responding to the maximum value of RMS at each
station x, as well as the maximum value of RMS inside
the boundary layer at each measurement station are
given in Fig. 8. The typical RMS profile in the y-direc-
tion shows a maximum value at some distance from the
wall, marking the position of maximum shear and the

Fig. 5. Downstream evolution of u0u0 stresses above the boundary layer
for both cases.

Fig. 6. Uniform inlet velocity distribution. Boundary layer velocity profiles at five stations.

Fig. 7. Uniform mean inlet velocity distribution. Boundary layer RMS profiles at five stations.
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edge of the recirculation bubble, and then drops as-
ymptotically to the corresponding free-stream value.
In Fig. 8(a), the maximum value of RMS increases

from the first measurement station, attains the maxi-
mum value at x ¼ 12 mm remains constant until x ¼ 17
mm and then begins to decrease. In Fig. 9, the integral
parameters, displacement thickness, momentum thick-
ness and the shape factor of the boundary layer as a
function of distance from the leading edge are presented.
For the calculation of the parameters, in the region
between y ¼ 0 and 0.3 mm the extrapolated data were
used. In this way, the resultant diagram for the shape
factor is qualitatively right although the values are lower
than that found in to similar experiments.
According to Ellsworth and Mueller (1991), the shape

factor H of a separated boundary layer has its peak at
the beginning of transition. From Fig. 9, the position
where the shape factor has maximum value is at x ¼ 12
mm. Downstream, the shape factor decreases and in the
last stations where the boundary layer is attached
reaches a value, approximately of 2, which is far from
the empirical value 1.3–1.4 of a fully turbulent boundary
layer. This is due to the fact that the boundary layer in
the region has not yet become fully turbulent. The dis-
placement thickness has also a maximum value at the
position x ¼ 12 mm. An alternative method to under-
stand if an attached boundary layer (downstream of the
position x ¼ 17 mm) is a developing or a fully turbulent
one, is to compare the experimental measurements, with
Musker (1979) expression in wall units for the velocity
distribution given as:

uþ ¼ 5:424 tan�1 ð2yþ � 8:15Þ
16:7

� �

þ log10
ðyþ þ 10:6Þ9:6

ðyþ2 � 8:15yþ þ 86Þ2

" #
� 3:52; ð4Þ

where, yþ ¼ ðy 
 usÞ=m, uþ ¼ u=us, us is friction velocity,
us ¼

ffiffiffiffiffiffiffiffiffiffi
sw=q

p
, sw is the wall shear stress.

For a flat plate at zero incidence the shear stress on
the wall is given as:

sw
q

¼ U 2
e

d#

dx
; ð5Þ

where # is the momentum thickness. Given the experi-
mental momentum thickness distribution, Fig. 9, sw can
be calculated from the above expression. In Fig. 10 the
calculated values of uþ based on the experimental data
together with those obtained from Musker’s expression,
are given.
The difference between the experimental data and the

theoretical expression reinforces the above conclusion
that downstream the reattachment point the boundary
layer is not yet fully turbulent.
At x ¼ 17 mm (Fig. 10), only the first two points

follow Musker’s expression (yþ < 10). In the range of yþ

20 < yþ < 1000, uþ decreases relatively fast. Down-
stream of the position x ¼ 17 mm more and more points
fit Musker’s expression. At x ¼ 29 mm (Fig. 11) the
experimental velocity profile is the same with Musker’s
profile until a yþ approximately equal to 80 and then
decreases with a much slower rate than that at x ¼ 17
mm. At x ¼ 29 mm, the Reynolds number based on
momentum thickness attains a value of 110 which is far
below the value 320 at which according to Murlis et al.
(1982) turbulent boundary layer can be maintained. The
shape factor has a value approximately of 2 and the
boundary layer seems to attain gradually the shape of a
fully developed turbulent boundary layer.

4.2.2. Transition under mean shear inlet velocity profile
Velocity profiles at various stations are presented

in Fig. 12. These velocity profiles are also in the

Fig. 8. Uniform inlet velocity distribution. Maximum value of RMS and the corresponding position at y-axis, inside the boundary layer.

Fig. 9. Uniform inlet velocity distribution. Boundary layer integral parameters for uniform inlet velocity profile.
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dimensionless form of ðU=UmaxÞ ¼ f ðy=HÞ, where H is
the wind tunnel height, but there were changes in the
way that the maximum velocity and boundary layer
thickness were defined. The value y, of the measure-
ments within the boundary layer, where the velocity
gradient becomes equal to 0.995 of the velocity gradient
in the free-stream, was defined as the edge of the
boundary layer. The corresponding velocity value at the
same y was taken as the Umax.
Applying the same extrapolation procedure, as in the

case of uniform inlet velocity profile, there is an indi-
cation of a separating boundary layer from the first
measurement station of x ¼ 6 mm. The same procedure
indicated that the reattachment point should be located
about at x ¼ 15–16 mm. The RMS profiles within the
boundary layer have the same shape as in the uniform
case, Fig. 13. In Fig. 14 the maximum values of RMS at
every station in the x-direction are plotted. The peak of
ðRMSÞmax is at x ¼ 15–16 mm and at y ¼ 0:7 mm above
the plate. Downstream of this position the value of

RMS is a little smaller and remains almost constant
until the last station.
The displacement thickness and the momentum

thickness in this case calculated as mentioned above are
shown in Fig. 15. In the region y ¼ 0–0.3 mm again the
extrapolated data was taken into account.
From x ¼ 7–9 mm the shape factor remains con-

stant and equal to the maximum value. Downstream of
x ¼ 9 mm H begins to decrease slowly until the position
x ¼ 15 mm. The region from y ¼ 0 mm to y ¼ 0:3 mm is
where the reverse flows probably exists. Downstream of
x ¼ 15 mm the shape factor decreases quickly until x ¼
20 mm, and remains almost constant.

5. Computational analysis

5.1. Mathematical formulation

In order to understand the physics of the experi-
mentally investigated flows, CFD work was carried out.

Fig. 10. Comparative diagrams of Musker’s profile and experimental measurements, within the boundary layer at the first stations downstream of the

reattachment point, for uniform inlet velocity profile.

Fig. 11. Comparative diagrams of Musker’s profile and experimental measurements, within the boundary layer at the last stations downstream of the

reattachment point, for uniform inlet velocity profile.

Fig. 12. Mean shear inlet velocity distribution. Boundary layer velocity profiles at various stations.
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The Navier–Stokes governing the fluid flow in their two-
dimensional tensorial form are given below:

oUi

oxi
¼ 0; ð6Þ

Uj
oUi

oxj
¼ � 1

q
op
oxi

þ o

oxj
m

oUi

oxj

��
þ oUj

oxi

�
� u0iu

0
j

�
: ð7Þ

To model the turbulence of the flow, three models
were used. The first two models are using the isotropic
Boussinesq’s hypothesis for the Reynolds stresses ten-
sor, i.e. �u0iu

0
j ¼ 2mtSij � 2=3kdij, with Sij the mean

strain-rate tensor and vt the eddy-viscosity calculated
with appropriate formulations depending on the model.
The first linear eddy-viscosity model is based on the k–e
formulation with the low Reynolds modifications after
Abe et al. (1994). One advantage of this model is that
the Kolmogorov velocity scale ue is used for the calcu-
lation of y�, instead of the friction velocity us that is used
for the calculation of yþ, which does not become zero

either at the separating or at the reattaching points so
there are no singularities in the calculation. The second
linear model is the k–x model with the appropriate low
Reynolds modifications as introduced by Wilcox (1998).
This model was chosen to examine the behavior of this
alternative representation of the second closure equation
in a turbulence modeling procedure which has been
widely used. The transport equations for the two models
are given below.

5.1.1. k–e model

mt ¼ clfl
k2

e
; ð8Þ
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Fig. 13. Mean shear inlet velocity distribution. RMS profiles within the boundary layer at various stations x.

Fig. 14. Mean shear inlet velocity distribution. Plots of the maximum value of RMS and the corresponding position at y-axis, inside the boundary

layer.

Fig. 15. Mean shear inlet velocity distribution. Boundary layer integral parameters for mean shear velocity profile.
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fe ¼ 1

�
� exp

�
� y�
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1
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ð11Þ

with rk ¼ 1:4, re ¼ 1:4, Ce1 ¼ 1:5, Ce2 ¼ 1:9, cl ¼ 0:09.

5.1.2. k–x model

mt ¼ a� k
x
; ð12Þ

Uj
ok
oxj

¼ o

oxj
mð

�
þ r�mtÞ

ok
oxj

�
� b�kx � u0iu

0
j
oUi

oxj
; ð13Þ

Uj
ox
oxj

¼ o

oxj
mð

�
þ rmtÞ

ox
oxj

�
� bx2 � a

x
k
u0iu

0
j
oUi

oxj
; ð14Þ

a� ¼ a�
0 þ Ret=Rk

1þ Ret=Rk
;

a ¼ 13
25

a0 þ Ret=Rx

1þ Ret=Rx
ða�Þ�1;

b� ¼ 9

100

4=15þ ðRet=RbÞ4

1þ ðRet=RbÞ4
fb� ;

ð15Þ

with b ¼ 9
125
fb, r� ¼ r ¼ 0:5, a�

0 ¼ 1
3
b0, a0 ¼ 1

9
, Rb ¼ 8,

Rk ¼ 6, Rx ¼ 2:95, b0 ¼ 9
125

and fb ¼ ð1þ 70vxÞ=ð1þ
80vxÞ, vx ¼ ðXijXjkSkiÞ=ðb�

0xÞ3
��� ���, f �

b ¼ 1, vk 6 0, f �
b ¼

ð1þ 680v2kÞ=ð1þ 400v2kÞ, vk > 0 with vk ¼ ð1=x3Þðok=
oxjÞðox=oxjÞ.
It is well known that turbulence models based on

Boussinesq’s hypothesis suffer from some important
weaknesses primary focused on the inability to capture
the Reynolds stress anisotropy and on the excessive
abnormal generation of turbulence in regions near
stagnation points. To eliminate the second weakness,
Kato and Launder proposed a different formulation of
the production term in the k-equation, Pk ¼ flCleSX,
instead of its original formulation, i.e., Pk ¼ flCleS2.
This modification has been used by Yakinthos and
Goulas (1995, 1999) for similar test cases with stagna-
tion point at the leading edge of flat plates but it was
found that for flows dominated by a separated bound-
ary layer, it led to larger recirculation regions. Tsuchiya
et al. (1997), in a more theoretical basis, proved that the
Kato and Launder modification has an inconsistency in
the modeling of Reynolds stresses, where it only revises
the expression of Pk in the equation of k while it uses the
conventional approximation of �u0iu

0
j in the momentum

equation. A new modification therefore was proposed
and was used in the present work, as follows:

Pk ¼ �u0iu0j
oUi

oxj
¼ flC�
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�
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�
P 1

�
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For the reasons described above and in relation that the
second experimental case is dominated by the presence
of a mean shear that introduces an anisotropy to the
flow, a third non-linear eddy-viscosity turbulence model
was also used. The chosen model was that introduced in
a final version by Craft et al. (1997) in its low Reynolds
formulation using two transport equations for k and e.
The equation for the Reynolds stress can be written as
follows:
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SklSklð � XklXklÞSij; ð17Þ

where the eddy-viscosity, turbulence energy and rate of
homogeneous dissipation are obtained by the following
equations:

mt ¼ clfl
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with the functions appearing in these equations having
the expressions

cl ¼ 0:3½1� expf�0:36= exp½�0:75maxð
~SS; ~XXÞ�g�

1þ 0:35 maxð~SS; ~XXÞ
n o1:5 ;

fl ¼ 1� exp

8<
:�

~RRt
90

 !0:5
�

~RRt
400

 !29=
;

E ¼ 0:0022
~SSmtk2

~ee
o2ui
oxjoxk

� �2
;

ce2 ¼ 1:92½1� 0:3 expð�~RR2t Þ�

The coefficients in the Reynolds stress tensor have
the following values: c1 ¼ �0:1, c2 ¼ 0:1, c3 ¼ 0:26,
c4 ¼ �10c2l, c5 ¼ �5c2l.
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This model has been extensively tested and modified.
Chen et al. (1998a) also have tested and compared this
model with a three equation non-linear eddy-viscosity
model in transitional boundary layers for turbomachine
aerodynamics and for flow around highly loaded com-
pressor cascade blades (1998b). In general a good
agreement with the experimental data in cases where
separation occurred concerning the velocity profiles in
regions such as recirculation zones and wake was re-
ported. This two equation model predicted also in a
satisfactory way the u0u0 distributions in selected loca-
tions although that the extended version of the three
equations model gave better results. The latter, in some
cases failed to convergence and numerical instabilities
have been observed by the researchers. This was the
primary reason for choosing in this work the two
equation model since the aim was not a numerical in-
vestigation of the non-linear models but their applica-
tion in order to achieve a better understanding of the
flows investigated experimentally.

5.2. The grid used

A full and integrated simulation of the flow using an
O-type grid with 150� 500 computational nodes was
utilized. The topology of the O-type grid used in this
work is described by the rectangular west external
boundary corresponding to the inlet, wind tunnel walls
and outlet regions, the east boundary corresponding to
the flat plate’s surface and the south and north internal
grid lines forming the connection region to close the O-
type topology. The inlet region (part of west boundary)
and the exit region (also part of west boundary) were
placed respectively far upstream and downstream of the
leading and trailing edge of the plate. For most of the
cells an expansion ratio equal to 1.2 in both x and y
directions has been adopted. Preliminary numerical ex-
periments to test for grid dependency were made and it
was concluded that the grid used gave a grid indepen-
dent solution. It must be noted that for low Reynolds k–
e modeling, grid dependency studies are restricted by the
parameters of grid distribution near the wall, since some

restrictions for the first point near the wall are necessary
to have the appropriate boundary conditions for re-
producing correctly the near-wall limiting behavior. To
be able to simulate accurately the boundary layer evo-
lution, at least 25 grid-points were inside the boundary
layer and at least 15 points were located in the region
with yþ < 10. Fig. 16 shows details of the grid used near
the inlet and the leading edge regions.

5.3. Numerical procedure

A 2-D Navier–Stokes elliptic solver in generalized
curvilinear coordinates was used. The control volume
technique has been adopted and the coupling of the
continuity equation with the momentum transfer equa-
tions was made using the pressure correction technique.
The primary solved variables are stored in the cell cen-
ters of the computational grid and thus the momentum
interpolation technique (Rhie and Chow, 1983) was
used. The HLPA scheme after Zhu (1991), was intro-
duced for the interpolation of the convective terms and
all transport equations were solved to a second order
accuracy after also the observations of Chen et al.
(1998b). The choice of this scheme was based on the
good and stable convergence behavior, which in com-
bination with the second order of accuracy, gives quite
satisfactory results, Yakinthos et al. (1995). The solution
procedure was based on an under-relaxation procedure
after Majumdar (1988), to obtain results independent
from the values of the under-relaxation factors. Typical
values for under-relaxation values were 0.7 for the pri-
mary cartesian velocities while for p, k, e or x we used
0.2. Convergence occurred when the maximum nor-
malized residual for all the solved variables was less than
1.E–04.

5.4. Boundary conditions

One major step in simulating fluid flows with a tur-
bulence model is the choice of appropriate inlet values of
the solved primary variables u, v, k, e, or x for the flow
entering the computational domain. For the values of k,

Fig. 16. Partial views of the grid used in the present work. Upper-left area at inlet, leading edge area.

A. Palikaras et al. / Int. J. Heat and Fluid Flow 23 (2002) 455–470 465



the essential formula based on the turbulence level was,
used, i.e. k ¼ 1:5 ðTuUÞ2, where Tu is the measured tur-
bulence level for each y station in the wind tunnel’s inlet
region and U is the corresponding measured velocity.
An interpolation of the experimental data was made in
order to have the appropriate values for the grid used.
The inlet values for e0 were obtained using the formula
e ¼ k3=2=l and for x0 using the formula x ¼

ffiffiffi
k

p
=l,

where l is the characteristic dissipation rate length scale
of turbulence. The length scale was chosen such as to
match the experiment distributions for the Reynolds
stresses in the free-stream region. For the wall surfaces
the boundary conditions are u ¼ v ¼ k ¼ 0, for the e
concerning the linear eddy-viscosity model, ew ¼ 2mk1=y21
where the subscript 1 stands for the first node close to
the wall. For the non-linear model we used, ew ¼ 0. For
the k–x equation we used x ! 6m=ðb0y2Þ as y ! 0.
Wilcox’s suggestion to have at least five nodes with
yþ < 2:5 for stable computations and accurate results
was also adopted. This boundary condition is applied to
all these points and not only to the first point near the
wall. A typical range for yþ at the first computational
node was 0.1–1 for the three models. For the pressure at
the walls and for all the values at exit, oU=on ¼ 0 was
used, where stands for the solved variables and n for the
normal to the boundary direction. Finally, a connection-
matching condition was imposed for the cells that
formed the O-type connection (south–north connection)
into the grid, following the suggestions of Ferzinger and
Peric (1999).

6. Results and discussion

The three models were applied for both experimental
cases. In general, the linear k–e model converged very
fast and it needed about half iterations of the k–x model
to achieve convergence. The non-linear model needed
the largest number of iterations. For the latter, the
computational procedure was based on some prelimi-
nary iterations using the version of the linear low Rey-

nolds Launder–Sharma model followed by a switch to
the non-linear model. Based on the evolution of the
measured free-stream Reynolds stresses, computer ex-
periments led to the use in the final runs for the dissi-
pation rate length scale a value of le ¼ 20 mm when
uniform velocity distribution was imposed at inlet and
19 mm when mean shear was present. For this case,
during the preliminary runs, a steep rise of the turbulent
properties downstream the flow and in the free-stream
region towards the exit was observed. The Reynolds
stresses were growing in a monotonic way but this
growth had a larger gradient than the measured one.
This observation led to introducing of the vortex
stretching parameter 7=ð3

ffiffiffiffiffi
15

p
Þce3e1:5 in the e-equa-

tion (and in a straightforward appropriate manner in
the x-equation), as defined by Bernard and Speziale
(1992), with ce1 ¼ 0:01. This inclusion led to a smoother
monotonic growth. Fig. 17 shows the calculated down-
stream evolution of Reynolds stresses in the free-stream
region for both cases using the non-linear model.
Fig. 18 shows two vector plots of the predicted flow

fields (using the linear k–e model) near the stagnation
point and the flat plate’s surface for both cases. The
separated flow is clearly shown and also the differences
in the longitudinal and normal directions when the mean
shear is present. The last, gives a smaller recirculation
zone in both directions.
For the uniform inlet mean velocity distribution, the

velocity profiles at various stations for the three models
compared with the experimental data are shown in Fig.
19. All the three models predict a region of separation a
the joining of the curved leading edge with the flat
horizontal surface. Experimental measurements could
not identify this region due to the limitations of the hot-
wire probe geometry, but plotting the experimental data
against the numerical ones and by examining the ve-
locity profile inside the boundary layer one can see that
also the measurements give an indication of flow sepa-
ration. The linear k–e model has a very good agreement
of the velocity distributions for all the stations, while the
k–e model predicts a larger recirculation region. On the

Fig. 17. Downstream evolution of u0u0, v0v0 and u0v0 in the free-stream region for uniform inlet velocity distribution (left) and mean shear velocity
distribution (right).
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other hand, the non-linear k–e model predicts a smaller
distance of the reattachment point, which lies between
the two linear models, and also a smaller thickness for
the separation region.
For the case where mean shear is present, Fig. 20

shows the velocity profiles against experimental data.
The computed reattachment point for the two linear
models differs by 1 mm. Among the two linear models,
the k–e model with the Abe et al. low Reynolds number
modifications gives better predictions in all stations,
while the k–x model predicts a larger thickness of the
separation bubble and thus, a larger recirculation
length. This behavior of k–x model, which was also
observed in the case for uniform mean velocity distri-
bution, gave us once more the indication that the
model’s closure constants need further calibration. In
the past, Peng et al. (1997), have shown that the early
version of the k–x model of Wilcox (1994) overesti-
mated the reattachment length in separated flows and
they proposed new modifications concerning the dam-
ping functions for the viscous sublayer. It seems that the
new version of k–x model, as it was introduced by
Wilcox in 1998, has the same behavior and thus it needs
a more detailed development. The non-linear model k–e
model gives better results among all the tested models in

the region where the boundary layer is separated but it
predicts a smaller recirculation zone since the reattach-
ment point is now located in about 2 mm upstream the
measured one.
A logical explanation for this behaviour should be the

excessive values of longitudinal values predicted by this
model as it will be shown next. The distributions of the
normal Reynolds stresses in the longitudinal direction,
u0u0 are shown in Figs. 21 and 22 for the uniform inlet
velocity distribution and mean shear inlet velocity dis-
tribution respectively. The superiority of the non-linear
model is clear when shear is present. The model predicts
exactly the stress profiles inside the boundary layer and
in the recirculation zone. The problems start when the
flow was reattached and an overestimation occurs. In
the case when shear is not present, there is an overesti-
mation of the u0u0 values in regions both inside and
outside the recirculation zone. This tendency for both
cases of the non-linear model for an overestimation is
clearer near and beyond the reattachment point. This
overestimation of the predicted near wall turbulence by
the two equation non-linear model has been also re-
ported by Chen et al. (1998b) for flows where an adverse
pressure gradient is imposed and it can be characterized
as a disadvantage of the model. The linear models

Fig. 18. Vector plot near the stagnation point and recirculation zone Uniform mean inlet velocity distribution (left), Mean shear inlet velocity

distribution (right).

Fig. 19. Uniform mean inlet velocity distribution. Velocity profiles for 8 stations. Experiment: (�), linear k–e: (- - -), non-linear k–e: (––), linear k–x:
(
 
 
).
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predict quite well the longitudinal stresses but this is
mostly related to the isotropy of the calculated stresses.
Despite the limitations of the measurement technique

since a single hot-wire inside the boundary layer was
used, and so, the computed experimental integral pa-
rameters are based on extrapolations, one can see how
the models behave. Fig. 23 shows the plots for the cal-
culated boundary layer integral parameters against the
experimental data. The aim of this part of the work was
mainly to give an indication of how the three turbulence
models behave for the two investigated flows.
In general, the two k–e models give the best results

while the k–x model fails to capture in both cases the
experimental data. In more details, the linear k–e model
with the Abe et al. low Reynolds modifications predicts
in a satisfactory way the boundary layer integral pa-
rameters for the first experimental case, while the non-

linear two equation k–e model gives the best predictions
when mean shear is present.

7. Conclusions

An experimental and computational work of the
flow over a flat plate with a semi-circular leading edge
and particularly in the region of transition was pre-
sented. This investigation is defined as the T3L test case
initiated by the ERCOFTAC SIG for transition with
the addition of an extra free-stream condition, i.e., the
presence of a mean shear. The flow was examined using
two inlet velocity distributions. One with a uniform
velocity profile and another one with a free mean shear
with oU=oy ¼ 27:7 s�1. Both inlet profiles had Uc ¼ 5 m/
s for the center-line velocity.

Fig. 20. Mean shear inlet velocity distribution. Velocity profiles for eight stations. Experiment: (�), linear k–e: (- - -), non-linear k–e: (––), linear k–x:
(
 
 
).

Fig. 21. Uniform mean inlet velocity distribution. Longitudinal Reynolds stresses. Experiment: (�), linear k–e: (- - -), non-linear k–e: (––), linear k–x:
(
 
 
).

Fig. 22. Mean shear inlet velocity distribution. Longitudinal Reynolds stresses. Experiment: (�), linear k–e: (- - -), non-linear k–e: (––), linear k–x:
(
 
 
).
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For both experiments, the separation of flow starts at
a distance x ¼ 6 mm from the leading edge. This dis-
tance is located in the region where the semi-circular
leading edge blends with the horizontal surface of the
flat plate. It was found that the existence of mean shear
inlet velocity distribution affects the size of recirculation
zone above and beyond the effect of FST alone. When
mean shear is present, the separation region has smaller
longitudinal length and thickness than the one with a
uniform mean velocity inlet distribution. The question
posed is which effect is responsible for this, the anisot-
ropy in the Reynolds stresses or the mean shear itself.
The present data cannot answer this and further work is
needed. Detailed investigation of the experimental re-
sults showed also that for both cases and for the last
measurement station far downstream, the flow is not
completely turbulent. This is confirmed by the com-
parisons of the velocity distributions with typical tur-
bulent profiles and by the experimental shape factor for
the boundary layer. The last does not reach for both
cases the typical value for turbulent flow of 1.3–1.4.
In order to obtain a more detailed picture of the flow,

since the limitations introduced by the measurement
techniques could not give a full one, a numerical study
has been carried out using an elliptic Navier–Stokes
solver. Three turbulence models were used. The aim was
not the calibration of the models, since in the majority
of the industrial applications of CFD, the available
models are taken in their classical form. The models
were introduced ‘‘as they are’’ and tested in order to
evaluate their behavior with no other modifications. The
first two models are based on the Boussinesq’s linear
approach for the eddy-viscosity. The extra equation

solved in parallel with the k transport equation is either
the transport of dissipation of turbulence or the trans-
port of specific dissipation rate of turbulence x. The
third model is based on a non-linear form for the eddy-
viscosity after Craft et al. that solves the two equations
for the turbulence closure, k and e. Regarding the ve-
locity distributions the two k–e models were found
to give satisfactory results for both cases while the
k–x model predicted larger recirculation regions. When
shear was present, the introduction of a vortex stretch-
ing parameter, as defined by Bernard and Speziale, was
needed in order to diminish the steep rise of the Rey-
nolds stresses downstream the fluid flow that were found
to increase beyond the measured ones in the experiment.
The non-linear model gave the better predictions con-
cerning the longitudinal normal Reynolds stresses in the
near wall region inside the recirculation zone, thought it
overpredicted their values in regions outside the reverse
flow region.
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